PRO-Kinetic Energy

Picture PRO-Kinetic Energy
PRO-Kinetic Energy Cobalt Chromium Stent System
Picture PRO-Kinetic Energy
PRO-Kinetic Energy Cobalt Chromium Stent System
Picture PRO-Kinetic Energy
PRO-Kinetic Energy Cobalt Chromium Stent System
Picture PRO-Kinetic Energy
PRO-Kinetic Energy Cobalt Chromium Stent System

PRO-Kinetic Energy


Indicated for improving coronary luminal diameter.6 The combined power of stent design, delivery system and proBIO coating are at your fingertips.

  • 60 μm thin struts1 for better clinically proven results 2
  • Highly flexible double helix stent design for optimal deliverability and vessel conformability
  • proBIO coating for enhanced biocompatability3
  • Proven Orsiro/PK Papyrus stent design provides exceptional deliverability


Product Details

Stent Design image

Advanced Stent Design

The PRO-Kinetic Energy stent design offers exceptional bending flexibility without compromising scaffolding or fatigue resistance. This advanced stent design allows for a smooth outer contour when bending without ridged transition zones.
Helical meanders give flexibility to the stent for excellent delivery and allow for a smooth crimped profile.
Wedge-shaped transitions at the stent ends allow for consistent scaffolding throughout the entire length of the stent.
Longitudinal connectors provide stability for optimal scaffolding and support without sacrificing flexibility.

Ultra Thin Strut Design

Struts of only 60 μm1 result in exceptional flexibility and deliverability of the stent in even the most challenging anatomy.

Powerful Cobalt Chromium Alloy

Our advanced materials allow engineers to push the limits of design with novel concepts for thinner struts
without compromising other aspects of the stent.

proBIO Silicon Carbide Coating

proBIO acts as a diffusion barrier, sealing the bare metal surface and reducing ion release. In vitro studies have shown up to a 96% reduction of allergenic metal ions4 when the stent surface is coated with silicon carbide.

By providing a barrier against ion release, the silicon carbide coating creates a surface that reduces platelet aggregation while facilitating endothelialization.3

Innovative Stent Delivery System

Expect effortless deliverability from the stent delivery system built with Pantera PTCA balloon technology featuring an Enhanced Force Transmission (EFT) shaft and thinner materials for added pushability and trackability.

Enhanced Force Transmission (EFT) shaft improves kink resistance and pushability due to the gradual transition from the proximal to the distal part of the shaft.

Advanced Thermal Crimping

Advanced thermal crimping techniques were developed for PRO-Kinetic Energy to ensure secure stent retention forces as well as a smooth, low crossing profile (0.95 mm/0.037")5.


  • Prospective, non-randomized, multi-center, observational registry to evaluate the clinical performance of the PRO-Kinetic Energy BMS in a large real-world patient population in standard clinical care.
  • Number of patients (n) 1,016

Technical Data

Stent material
Cobalt chromium, L-605
Passive coating proBIO (Amorphous Silicon Carbide) coating
Strut thickness ø 2.0 - 3.0 mm: 60 μm (0.0024"); ø 3.5 - 4.0 mm: 80 μm (0.0031"); ø 4.5 - 5.0 mm: 120 μm (0.0047”)
Delivery System
Catheter type Rapid exchange
Recommended guide catheter Recommended guide catheter
Lesion entry profile 0.017"
Guide wire diameter 0.014"
Usable catheter length 140 cm
Balloon material Semi crystalline co-polymer material
Coating (distal shaft) Hydrophilic coating
Marker bands Two swaged platinum-iridium markers
Proximal shaft diameter 2.0F
Distal shaft diameter 2.5F: ø 2.0 - 3.5 mm; 2.8F: ø 4.0 - 5.0 mm
Nominal pressure (NP) 9 atm
Rate burst pressure (RBP) 16 atm (2.0 - 4.0 mm); 14 atm (4.5 - 5.0 mm)

Compliance Chart

Balloon Diameter x Length (mm)
Nominal Pressure atm5 9 9 9 9 9 9 9 9 9
(NP) ø (mm) 2.00 2.25 2.50 2.75 3.00 3.50 4.00 4.50 5.00
Rated Burst Pressure atm5 16 16 16 16 16 16 16 14 14
(RBP) ø (mm) 2.33 2.59 2.83 3.12 3.42 4.07 4.65 5.11 5.63

Ordering Information



1 2.0 - 3.0 mm stents

2 ISAR STEREO I & II; (I) Kastrati et al. 2001. Circulation. 103(23): 2816-21.; (II) Pache et al. 2003. J Am Coll Cardiol. 41(8): 1283-8.

3 Rzany A, Schaldach M. 2001. Progress in Biomedical Research 2001 May: 182-194.

4 BIOTRONIK data on file

5 1 atm = 1.013 bar

6 Indication as per IFU