Proven Superiority in STEMI Patients¹

Orsiro Mission[®]

BIOSTEMI and BIOSTEMI ES - Long-term Outcomes with Biodegradable Polymer Sirolimus-eluting Stents versus Durable Polymer Everolimus-eluting Stents in ST-segment Elevation Myocardial Infarction: 5-year follow-up of the BIOSTEMI randomized trial

Prof. Juan F. Iglesias, Geneva University Hospitals, Geneva, Switzerland

1. With Orsiro DES in comparison to Xience in STEMI patients, Based on Iglesias J.F., BIOSTEMI 5 year follow up, Presented at TCT 2023, San Francisco USA. Clinical data collected with Orsiro DES within the Orsiro family clinical program. Orsiro and Orsiro Mission are trademarks or registered trademarks of the BIOTRONIK Group of Companies. All other trademarks are the property of their respective owners.

BIOSTEMI

Comparison of an Ultrathin Strut Biodegradable Polymer Sirolimus-Eluting Stent With a Durable Polymer Everolimus-Eluting Stent for Patients With Acute STEMI Undergoing Primary PCI at 24 mo

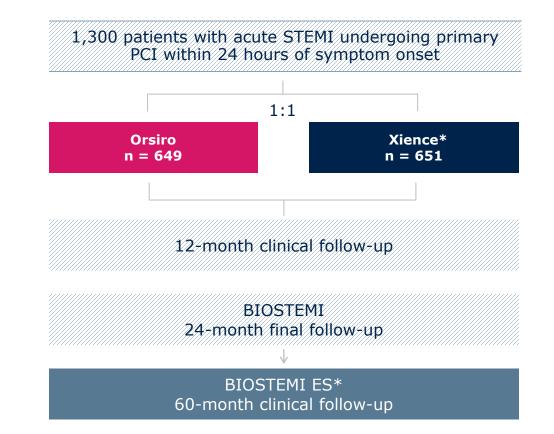
Design

Investigator-initiated, prospective, multicenter, assessor-blinded, randomized (1:1), controlled **superiority** trial. *BIOSTEMI-Extended Survival was led to achieve 5 follow-up.

Objective

To compare Orsiro[®] to Xience DES in patients with acute STEMI undergoing primary PCI within 24 hours of symptoms onset.

Principal Investigators


Dr. J.F. Iglesias, HUG, Geneva, CH

Dr. O. Muller, CHUV, Lausanne, CH

Pr. T. Pilgrim, Inselspital, Universitätsspital, Bern, CH

• Primary Endpoint

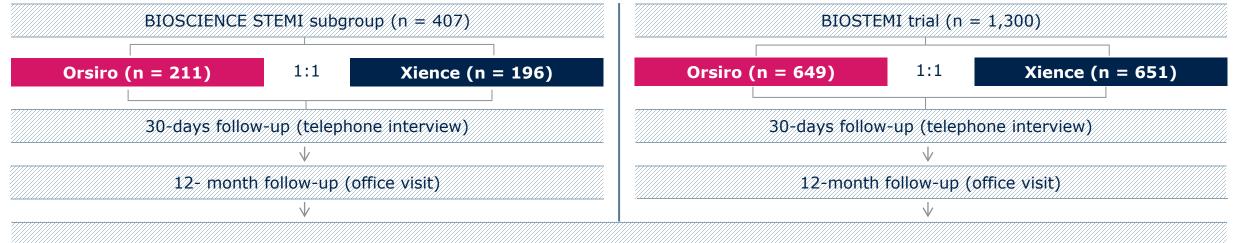
A composite of death from cardiac causes, myocardial infarction, or stent thrombosis at 1 year, and was powered for noninferiority, with an absolute margin of 4.1% at 1-sided 5% alpha.

*Xience is a trademark of Abbott Cardiovascular Systems Inc.

Endpoints

Primary Endpoint

Target Lesion Failure (TLF) - Composite of Cardiac Death, Target Vessel Myocardial Reinfarction, and clinically-indicated Target Lesion Revascularization at 12 months


Secondary Endpoints

- All-cause Death
- Cardiac Death
- Q-wave and non-Q-wave Myocardial Infarction (MI)
- Clinically-indicated and not clinically-indicated Target Lesion Revascularization (TLR)
- Clinically-indicated and not clinically-indicated Target Vessel Revascularization (TVR)
- Target Vessel Failure (TVF)
- Definite Stent Thrombosis (ST)
- Definite/Probable Stent Thrombosis (ST)

Study Design and Patient Flow

Superiority analysis for target lesion failure (cardiac death, target vessel myocardial reinfarction, or clinically-indicated target lesion revascularization) at 12 months employing bayesian approach

	Orsiro (n = 649)	Xience (n = 651)		
Age (years)	62.2 ± 11.8	63.2 ± 11.8		
Male gender	513 (79%)	477 (73%)		
BMI (kg/m ²)	26.9 ± 4.3	26.8 ± 4.3		
Diabetes mellitus	73 (11%)	82 (13%)		
Oral treatment	43 (7%)	60 (9%)		
Insulin dependent	22 (3%)	15 (2%)		
Hypertension	281 (44%)	297 (46%)		
Hypercholesterolemia	304 (47%)	302 (47%) ⁺⁺		
Active smoker	294 (46%)	250 (39%)**		
Prior myocardial infarction	27 (4%)	24 (4%)		
Prior percutaneous coronary intervention	29 (5%)	34 (5%)		
Prior coronary artery bypass surgery	2 (0.3%)	8 (1%)		
Prior stroke	16 (3%)	19 (3%)		
Peripheral arterial disease	16 (3%)	17 (3%)		
Chronic renal failure (eGFR <60 ml/min)	76 (12%)*	78 (12%)		
Left ventricular ejection fraction (%)	$49.0 \pm 11.0^{+}$	$48.4 \pm 11.2^{\#}$		

Data expressed as n (%) or mean ± standard deviation. eGFR, estimated glomerular filtration rate. *n = 633; †n = 394; ††n = 644; ‡‡n = 635; ||||n = 632; Source: Pilgrim et al. Biodegradable – versus durable-polymer drug-eluting stents for STEMI. Final 2-year outcomes of the BIOSTEMI trial. J Am Coll Cardiol. Cardiovasc Interven.

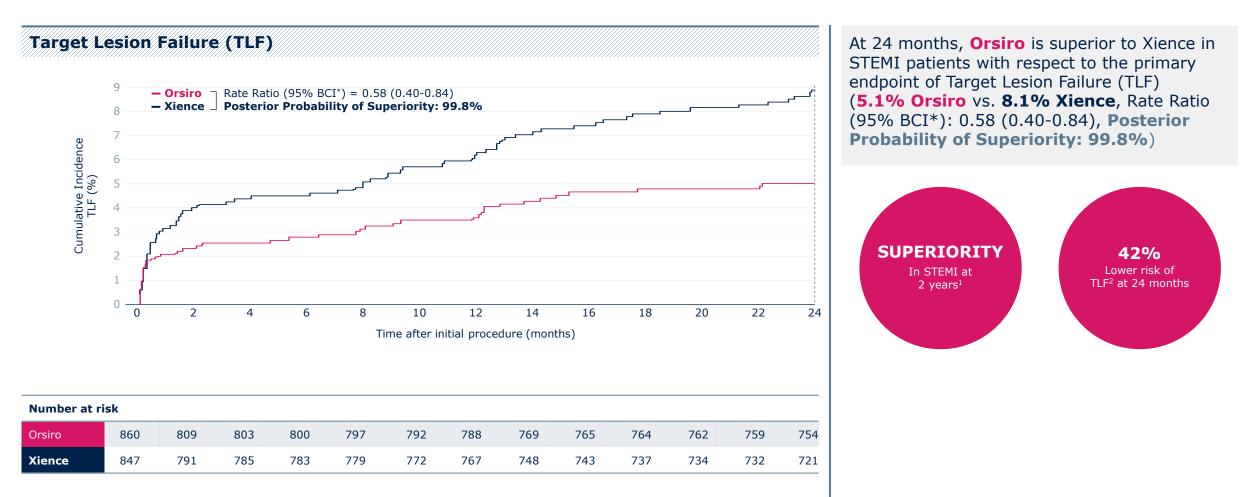
	Orsiro (n = 649)	Xience (n = 651)	P-value
Number of lesions	n = 816	n = 806	
Target vessel location - Per lesion no. (%)			0.133
Left main coronary artery	10 (1%)	9 (1%)	
Left anterior descending artery	316 (39%)	357 (44%)	
Left circumflex artery	143 (18%)	137 (17%)	
Right coronary artery	346 (42%)	302 (38%)	
Saphenous vein graft	1 (0.1%)	1 (0.1%)	0.993
Number of lesions per patient	1.26 ± 0.57	1.24 ± 0.52	0.756
Number of lesions per patient [‡] - no. (%)			0.756
0	1 (0.2%)	0 (0%)	
1	516 (80%)	523 (80%)	
2	103 (16%)	103 (16%)	
3	23 (4%)	23 (4%)	
≥4	6 (1%)	2 (0.3%)	

Data expressed as n (%) or mean \pm standard deviation. $^{+}n = 614$;

Source: Iglesias JF et al. Long-term outcomes with biodegradable polymer sirolimus-eluting stents versus durable polymer everolimus-eluting stents in ST-segment elevation myocardial infarction: 5-year follow-up of the BIOSTEMI randomised superiority trial, Lancet, 2023

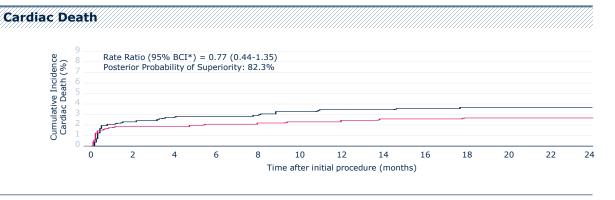
	Orsiro (n = 649)	Xience (n = 651)	P-value
Type of intervention			0.302
Percutaneous coronary intervention	797 (98%)	793 (98%)	
Plain old balloon angioplasty	17 (2%)	13 (2%)	
Coronary artery bypass graft	1 (0.1%)	0 (0%)	
Failed percutaneous coronary intervention	1 (0.1%)	0 (0%)	
Baseline TIMI flow			0.206
0 or 1	448 (55%)	473 (59%)	
2	108 (13%)	115 (14%)	
3	257 (32%)	215 (27%)	
Post TIMI flow			0.355
0 or 1	5 (1%)	3 (0.4%)	
2	17 (2%)	25 (3%)	
3	791 (97%)	778 (97%)	
Intra-aortic balloon pump	3 (1%)*	5 (1%)#	0.486
Vasopressors	14 (2%)*	12 (2%)#	0.686
Cardiogenic shock	20 (3%)*	21 (3%)#	0.876

Data expressed as n (%) or mean ± standard deviation. *n = 614; Source: Pilgrim et al. Biodegradable – versus durable-polymer drug-eluting stents for STEMI. Final 2-year outcomes of the BIOSTEMI trial. J Am Coll Cardiol. Cardiovasc Interven. 2021, doi: 10.1016/j.jcin.2020.12.011


	Orsiro (n = 649)	Xience (n = 651)	P-value
Restenotic lesion	11 (1%)	13 (2%)	0.740
Total occlusion	400 (49%)	443 (55%)	0.024
Chronic total occlusion	1 (0.1%)	3 (0.4%)	0.335
Thrombus aspiration	243 (30%)	250 (31%)	0.675
Total number of stents implanted	1.37 ± 0.64*	1.39 ± 0.66	0.789
Total stent length (mm)	$31.91 \pm 18.21*$	33.92 ± 19.76	0.051
Maximum stent diameter (mm)	$3.17 \pm 0.52*$	3.16 ± 0.50	0.705
Maximum pressure (atm)	$13.49 \pm 3.24^+$	$13.82\pm3.23^\dagger$	0.027
Overlapping stents	219 (28%)*	236 (30%)	0.407
Pre-dilatation	215 (27%)*	202 (26%)	0.549
Post-dilatation	525 (66%)*	528 (67%)	0.738
Long lesion (total stent length \geq 20mm)	567 (71%)*	563 (71%)	0.814
Small vessel (minimum stent diameter \leq 3.0mm)	292 (36%)	321 (40%)	0.125
Bifurcation treatment (including left main coronary artery)	101 (12%)	115 (14%)	0.400
Type of stent per lesioni - no.(%)			0.549
BP-SES	791 (99%)*	2 (0.3%)	
DP-EES	1 (0.1%)*	789 (100%)	
Other drug-eluting stent	5 (1%)*	3 (0.4%)	
Bare-metal stent	1 (0.1%)*	0 (0%)	

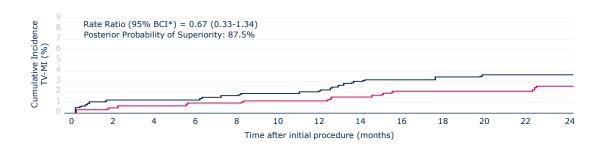
Data expressed as n (%) or mean ± standard deviation. ‡n = 614; Source: Pilgrim et al. Biodegradable – versus durable-polymer drug-eluting stents for STEMI. Final 2-year outcomes of the BIOSTEMI trial. J Am Coll Cardiol. Cardiovasc Interven. 2021, doi: 10.1016/j.jcin.2020.12.011

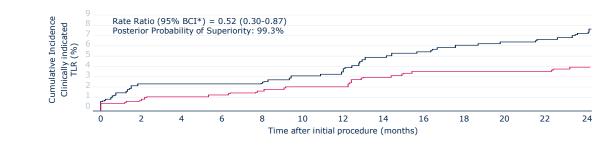
Primary Endpoint – TLF at 24 Months


*BCI: Bayesian Credible Interval

1. vs. Xience, based on TLF rates; 2. vs. Xience in STEMI, based on a Rate Ratio of 0.58.

Individual Components of Primary Endpoint at 24 Months




Number at risk													
Orsiro	860	814	810	807	806	803	799	784	783	782	780	777	774
Xience	847	806	800	798	796	793	790	778	775	772	771	770	762

The difference in TLF was driven by significantly lower rates of clinically-indicated target lesion revascularization (TLR) (**2.5% Orsiro** vs. **5.1% Xience**, Rate Ratio (95% BCI*): 0.52 (0.30-0.87), **Posterior Probability of Superiority: 99.3%**)

Target Vessel Myocardial Infarction

Clinically-indicated Target Lesion Revascularization

Number at r	Number at risk											Number at i	isk		
Orsiro	860	812	807	804	803	799	795	778	774	773	771	768	763	Orsiro	860
Xience	847	799	793	791	787	783	778	763	759	755	753	752	744	Xience	847

Number at risk													
Orsiro	860	810	804	801	798	793	789	770	766	765	763	760	755
Xience	847	793	787	785	783	776	771	753	748	742	739	737	726

Clinical Outcomes at 24 Months

			BIOSTEMI with histori	cal data from BIOSCIENCE	BIOST	EMI Only
	Orsiro (n = 649)	Xience (n = 651)	Rate Ratio (95% BCI*)	Bayesian Posterior Probability	Rate Ratio (95% BCI*)	Bayesian Posterior Probability
Target lesion failure	33 (5.1%)	53 (8.1%)	0.58 (0.40-0.84)	0.998	0.62 (0.40 0.96)	0.985
Cardiac death	19 (2.9%)	21 (3.2%)	0.77 (0.44-1.35)	0.823	0.91 (0.49-1.69)	0.614
Target vessel MI	10 (1.5%)	13 (2%)	0.67 (0.33-1.34)	0.875	0.77 (0.33-1.75)	0.731
Clinically-indicated TLR	16 (2.5%)	33 (5.1%)	0.52 (0.30-0.87)	0.993	0.48 (0.26-0.86)	0.993
All-cause death	27 (4.2%)	25 (3.8%)	1.02 (0.64-1.63)	0.471	1.09 (0.63-1.89)	0.376
MI	24 (3.7%)	20 (3.1%)	1.01 (0.59-1.71)	0.491	1.20 (0.67-2.20)	0.267
Q-wave	5 (0.8%)	5 (0.8%)	0.73 (0.25-2.02)	0.727	1.01 (0.30-3.39)	0.495
Non-Q-wave	19 (2.9%)	16 (2.5%)	1.06 (0.58-1.93)	0.423	1.20 (0.62-2.38)	0.295
Repeat revascularization	35 (5.4%)	52 (8%)	0.67 (0.46-0.96)	0.985	0.67 (0.43-1.02)	0.969
Any TLR	18 (2.8%)	34 (5.2%)	0.54 (0.32-0.89)	0.992	0.53 (0.29-0.92)	0.989
Any TVR	22 (3.4%)	41 (6.3%)	0.58 (0.37-0.89)	0.994	0.53 (0.31-0.88)	0.993
Clinically-indicated TVR	20 (3.1%)	40 (6.1%)	0.56 (0.35-0.87)	0.995	0.50 (0.29-0.84)	0.996
Target vessel failure	39 (6%)	61 (9.4%)	0.61 (0.43-0.86)	0.998	0.63 (0.42-0.94)	0.988
Death, MI, or any repeat revascularization	65 (10%)	77 (11.8%)	0.81 (0.61-1.08)	0.929	0.84 (0.60-1.17)	0.849
Definite stent thrombosis	9 (1.4%)	12 (1.8%)	0.73 (0.30-1.69)	0.771	0.76 (0.31-1.77)	0.739
Definite or probable stent thrombosis	13 (2%)	15 (2.3%)	0.72 (0.38-1.44)	0.837	0.87 (0.41-1.84)	0.642
BARC bleeding events types 3-5	26 (4%)	24 (3.7%)	0.92 (0.58-1.59)	0.625	1.10 (0.63-1.92)	0.372

TLF at 24 Months by Subgroups

		Orsiro	Xience	Rate Ratio (95% BCI**)		Bayesian Posterior Probability	Bayesian Posterior Probability (interaction)
Diabetes	no	27/575	43/569	0.59 (0.38-0.89)		0.994	0.774
	yes	5/73	10/82	0.43 (0.21-0.90)		0.986	
Gender	male	24/513	33/477	0.68 (0.43-1.06)		0.955	0.915
	female	9/136	20/174	0.39 (0.21-0.76)		0.997	
Age	<65 years	12/381	24/376	0.51 (0.28-0.89)		0.992	0.734
	≥65 years	21/268	29/275	0.65 (0.39-1.07)		0.955	
BMI (kg/m2)	<30	28/513	40/518	0.68 (0.44-1.03)		0.964	0.922
	≥30	5/134	11/131	0.35 (0.17-0.83)		0.991	
Renal failure*	no	17/557	37/555	0.50 (0.30-0.78)		0.999	0.914
	yes	15/76	16/78	0.93 (0.41-1.76)		0.578	
Small vessel (≤3.0mm)	no	3/214	12/220	0.36 (0.11-0.85)		0.990	0.891
	yes	29/429	41/431	0.67 (0.42-1.06)		0.957	
Long lesion (≥20mm)	no	6/139	10/152	0.69 (0.29-1.63)		0.799	0.658
	Yes	26/504	43/499	0.56 (0.35-0.90)	NO 2	0.992	
Multi-Vessel Disease (MVD)	no	31/598	45/601	0.67 (0.45-0.99)	•	0.977	0.994
	yes	2/50	8/50	0.08 (0.03-0.40)		0.999	
					Favors Favors Kie	vors	

BIOSTEMI Trial

JACC: Cardiovascular Interventions

Published Online March 13,2021

DOI: 10.1016/j.jcin.2020.12.011

Publication

the **BIOSTEMI** trial

Title

Authors

Conclusion

VOL. . NO. . . 20

@ 2021 THE AUTHORS. PUBLISHED BY ELSEVIER ON BEHALF OF THE AMERICAN LEGE OF CARDIOLOGY FOUNDATION. THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY-NC-ND LICENSE (http://

Biodegradable- Versus Durable-Polymer Drug-Eluting Stents for STEMI

Final 2-Year Outcomes of the BIOSTEMI Trial

Thomas Pilgrim MD MSc ** Olivier Muller MD PuD ** Dik Heg PuD * Marco Roffi MD * David I Kurz MD * Igal Moarof, MD,⁴ Daniel Weilenmann, MD,⁸ Christoph Kaiser, MD,^b Maxime Tapponnier, MD,¹ Sylvain Losdat, PnD, Eric Eeckhout, MD, PaD, b Marco Valgimigli, MD, PaD, Peter Jüni, MD, Stephan Windecker, MD, Juan F. Iglesias, MD

OBJECTIVES The aim of this study was to investigate the safety and efficacy of biodegradable-polymer sholimus eluting stents (BP-SES) compared with durable-polymer everolimus-eluting stents (DP-EES) in patients with ST-segmen elevation myocardial infarction (STEMI)

BACKGROUND Primary pergutaneous coronary intervention (PG) is an effective treatment for patients with STEM and long-term outcomes are determined by the safety and efficacy profile of the newest generation drug-eluting stents

METHODS BIOSTEMI (A Comparison of an Ultrathin Strut Biodegradable Polymer Sirolimus-Eluting Stent With a Durable Polymer Everolimus-Eluting Stent for Patients With Acute ST-Segment Elevation Myocardial Infarction Under going Primary Percutaneous Coronary Intervention) was an investigator-initiated, multicenter, assessor-blind, randomized superiority trial using Bayesian methods. Patients with STEMI undergoing primary PQ within 24 h of symptom onset were randomized in a 1:1 ratio to receive BP-SES (n - 649) or DP-EES (n - 651). The primary endpoint was target lesion failure (TLF), a composite of cardiac death, target vessel myocardial reinfarction, and clinically indicated target lesion revascularization (TLR) at 2 years

RESULTS Between April 2016 and March 2018, 1,300 patients were included, Baseline characteristics were compa between the 2 treatment groups. Follow-up through 2 years was complete in 1,221 patients (94%). At 2 years, TLF occurred in 33 patients (5,1%) treated with BP-SES and in 53 patients (8,1%) treated with DP-EES (rate ratio: 0.58; 95% Bayesian credible interval: 0.40 to 0.84; posterior probability of superiority - 0.998). The difference was driven by a lower incidence of clinically indicated TLR in patients treated with BP-SES compared with DP-EES (2.5% vs. 5.1%; rate ratio: 0.52; 95% Bayesian credible interval: 0.30 to 0.87; posterior probability of superiority - 0.993). There were no significant differences in rates of cardiac death, target vessel myocardial reinfarction, and definite stent thrombosis between the 2 treatment arms.

CONCLUSIONS In patients with STEMI undergoing primary PCI, BP-SES were superior to DP-EES with respect to TLF at 2 years. The difference was driven by lower rates of ischema-driven TLR. (A Comparison of an Ultrathin Strut Biodegradable Polymer Sirolimus-Eluting Stent With a Durable Polymer Everolimus-Eluting Stent for Patients With Acute ST-Segment Elevation Myocardial Infanction Undergoing Primary Percutaneous Coronary Interventio [BIOSTEMI]; NCT02579031) (J Am Coll Cardiol Intv 2021; ::639-48) © 2021 The Authors. Published by Elsevier or behalf of the American College of Cardiology Foundation. This is an open access article under the CC BY-NC-ND ons.org/licenses/by-nc-nd/4.0/). license (http://creativ

From the "Department of Cardiology, Inseispital, Bern University Hospital, University of Bern, Bern, Switzerland; "Department of From the comparaments obviously, housing, an analysis, in a distance of product and product and the comparaments obviously Housing, Hou Swizerland, and the ¹Applied Health Research Centre, Li Ka Shing Knowledge Institute of St. Michael's Hospital, Department of Madine and Institute of Health Policy, Management and Probasilon, University of Toronto, Toronto, Ontado, Gasada, "Drs. Figtim and Multicronthitude quality to this work. Dr. John Bitt served as Gasat Elidor of this attrict.

ISSN 1936-8798

https://doi.org/10.1016/j.jcin.2020.12.01

Orsiro Mission - BIOSTEMI

20-DEC-23 13

Source: Pilgrim et al. Biodegradable - versus durable-polymer drug-eluting stents for STEMI. Final 2-year outcomes of the BIOSTEMI trial. J Am Coll Cardiol. Cardiovasc Interven. 2021, doi: 10.1016/j.jcin.2020.12.011

Biodegradable - Versus durable-polymer drug-eluting stents for STEMI. Final 2-year outcomes of

Thomas Pilgrim, MD; MSc, Olivier Muller, MD PhD; Dik Heg, PhD; Marco Roffi, MD; David J. Kurz, MD; Igal

In patients with STEMI undergoing primary PCI, BP-SES were superior to DP-EES with respect to TLF at

2 years. The difference was driven by lower rates of ischemia-driven TLR

Moarof, MD; Daniel Weilenmann, MD; Christoph Kaiser, MD; Maxime Tapponnier, MD; Sylvain Losdat, PhD; Eric

Eeckhout, MD, PhD; Marco Valgimigli, MD, PhD; Peter Jüni, MD; Stephan Windecker, MD; Juan F. Iglesias, MD

Conclusion

At 24 months, Orsiro is superior to Xience in STEMI patients with respect to the primary endpoint of Target Lesion Failure (TLF) (5.1% vs. 8.1%, Rate Ratio (95% BCI*): 0.58 (0.40-0.84), **Posterior Probability of Superiority: 99.8%**)

The difference in TLF rates remained statistically significant after the exclusion of historical information from the STEMI subgroup of the BIOSCIENCE trial (Rate Ratio (95% BCI*): 0.62 (0.40-0.96), **Posterior Probability of Superiority: 98.5%**)

Clinically-indicated Target Lesion Revascularization (TLR) rate was significantly lower in Orsiro compared to Xience (2.5% vs. 5.1%, Rate Ratio (95% BCI*): 0.52 (0.30-0.87), **Posterior Probability of Superiority: 99.3%)**

The significant difference at 24-m favoring the Orsiro vs. Xience DES might have clinically relevant implications for routine clinical practice.

BIOSTEMI ES

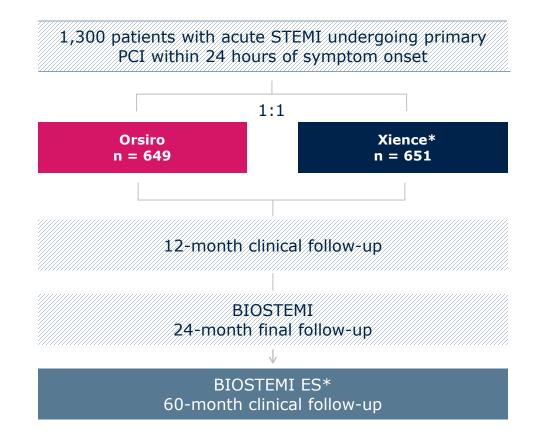
Long-term Outcomes with Biodegradable Polymer Sirolimus-eluting Stents versus Durable Polymer Everolimus-eluting Stents in ST-segment Elevation Myocardial Infarction

Design

Investigator-initiated, prospective, multicenter, assessor-blinded, randomized (1:1), controlled **superiority** trial. *BIOSTEMI Extended Survival was led to achieve 5 follow-up.

) Objective

+

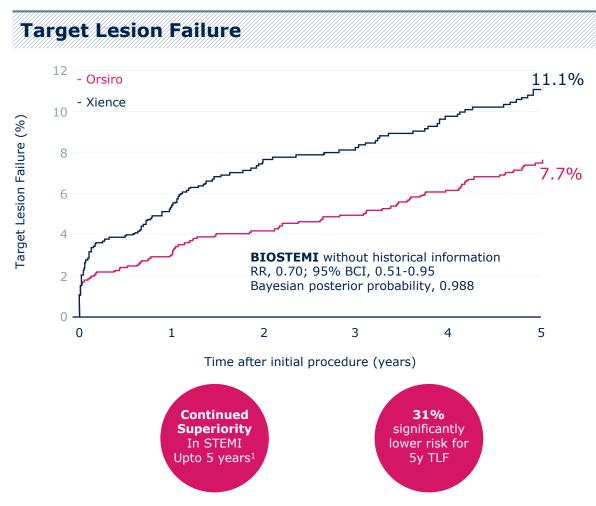

To compare Orsiro[®] to Xience DES in patients with acute STEMI undergoing primary PCI within 24 hours of symptoms onset.

Principal Investigators

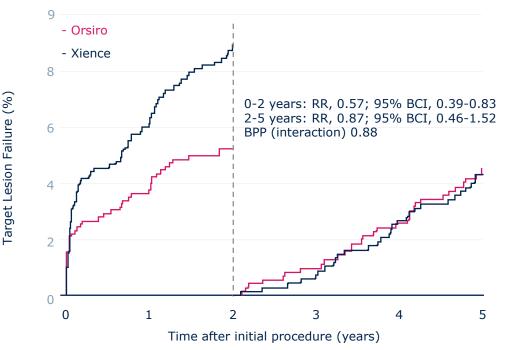
Dr. J.F. Iglesias, HUG, Geneva, CH

Primary Endpoint

A composite of death from cardiac causes, myocardial infarction, or stent thrombosis at 5 year, and was powered for noninferiority, with an absolute margin of 4.1% at 1-sided 5% alpha.


*Xience is a trademark of Abbott Cardiovascular Systems Inc.

Iglesias, JF. et al. Long-term outcomes with biodegradable polymer sirolimus-eluting stents versus durable polymer everolimus-eluting stents in ST-segment elevation myocardial infarction: 5-year follow-up of the BIOSTEMI randomised superiority trial, Rounded outcomes from publications



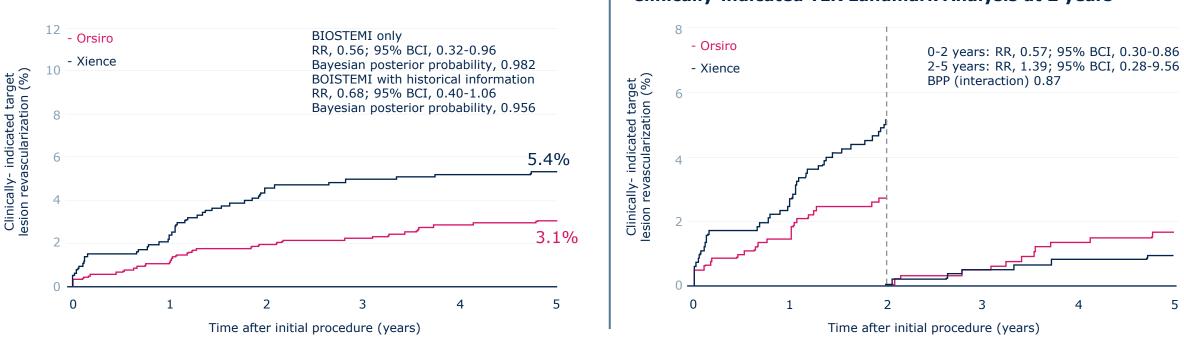
Primary Endpoint – TLF at 60 Months

Orsiro - Significantly reduces target lesion failure in STEMI patients¹

Target Lesion Failure Landmark Analysis at 2 years

Orsiro makes the difference from implantation up to 2 years and maintaining it up to 5-year follow-up in STEMI patients^{1,2}

1. Based on TLF with Orsiro DES in comparison to Xience DES in STEMI patients Source: Iglesias, JF. et al. Long-term outcomes with biodegradable polymer sirolimus-eluting stents versus durable polymer everolimus-eluting stents in ST-segment elevation myocardial infarction: 5-year follow-up of the BIOSTEMI randomised superiority trial.



Clinically-indicated TLR¹

Selected Secondary Endpoints at 60 Months

Orsiro is superior to Xience with respect to the rates of TLF at 5 years of follow-up, a difference driven by a numerically lower risk for clinically-driven TLR.

Clinically-indicated TLR Landmark Analysis at 2 years²

Iglesias, JF. et al. Long-term outcomes with biodegradable polymer sirolimus-eluting stents versus durable polymer everolimus-eluting stents in ST-segment elevation myocardial infarction: 5-year follow-up of the BIOSTEMI randomised superiority trial, Rounded outcomes from publications

Selected Secondary Endpoints at 60 Months

				with historical rom BIOSCIENCE	BIOSTEMI only Without historical information from BIOSCIENCE		
	Orsiro	Xience	Rate Ratio (95% BCI)	Bayesian Posterior Probability of Superiority	Rate Ratio (95% BCI)	Bayesian Posterior Probability of Superiority	
TLF	8%	11%	0.70 (0.51-0.95)	0.988	0.68 (0.47-0.98)	0.981	
Cardiac Death	5%	6%	0.81 (0.54-1.23)	0.839	0.89 (0.55-1.43)	0.677	
TV-ReMI	2%	3%	0.76 (0.41-1.34)	0.833	0.67 (0.32-1.35)	0.868	
CI-TLR	3%	5%	0.68 (0.40-1.06)	0.956	0.56 (0.32-0.96)	0.982	
Target Vessel Failure	10%	13%	0.74 (0.55-0.97)	0.984	0.71 (0.51-0.98)	0.982	
CI-TVR	4%	6%	0.59 (0.34-0.98)	0.979	0.56 (0.34-0.92)	0.990	
POCE	16%	18%	0.88 (0.66-1.14)	0.836	0.87 (0.67-1.13)	0.847	
Definite Stent Thrombosis	2%	3%	0.58 (0.28-1.18)	0.933	0.59 (0.28-1.20)	0.927	

In BIOSTEMI ES, Orsiro showed significantly lower:

- Target Lesion Failure: -31%¹
- Target Vessel Failure: -28%¹
- Clinically-Indicated Target Lesion Revascularisation: -43%¹
 Clinically-Indicated Target Vessel Revascularisation: -43%¹

1. Based on 5Y FUP of the BIOSTEMI trial, Source: Iglesias, JF. et al. Long-term outcomes with biodegradable polymer sirolimus-eluting stents versus durable polymer everolimuseluting stents in ST-segment elevation myocardial infarction: 5-year follow-up of the BIOSTEMI randomised superiority trial, Rounded outcomes from publications

BIOSTEMI ES

Articles

Publication

The Lancet Published Online October 25, 2023 https://doi.org/10.1016/S0140-6736(23)02197-9

Title

Long-term outcomes with biodegradable polymer sirolimus-eluting stents versus durable polymer everolimus-eluting stents in ST-segment elevation myocardial infarction: 5-year follow-up of the BIOSTEMI randomized superiority trial

Authors

Juan F Iglesias, Marco Roffi, Sylvain Losdat, Olivier Muller, Sophie Degrauwe, David J Kurz, Laurent Haegeli, Daniel Weilenmann, Christoph Kaiser, Maxime Tapponnier, Stéphane Cook, Florim Cuculi, Dik Heg, Stephan Windecker, Thomas Pilgrim

Conclusion

In patients undergoing primary percutaneous coronary intervention for STEMI, biodegradable polymer sirolimus-eluting stents were superior to durable polymer everolimus-eluting stents with respect to target lesion failure at 5 years of follow-up. The difference was driven by a numerically lower risk for ischemia-driven target lesion revascularisation.

Iglesias, JF. et al. Long-term outcomes with biodegradable polymer sirolimus-eluting stents versus durable polymer everolimus-eluting stents in ST-segment elevation myocardial infarction: 5-year follow-up of the BIOSTEMI randomised superiority trial.

Long-term outcomes with biodegradable polymer sirolimus- \Re

an Figlesias, Marco Roffi, Sylvain Losdat, Olivier Muller, Sophie Degrauwe, David J Kurz, Laurent Haegdi, Danid Welenmann, Christoph Kai zeime Tapponnier, Stéphane Cook, Florim Cuculi, Dik Heg. Stephan Windecker, Thomas Pilgrim

.

Continuory Riodingzalada polymer stroktmus-sluting stema impore curly startne-slut-diad diaxial statomes compared resource diaxial statomes compared resource diaxial statomes compared resource diaxial statomes (STEM) (2000)

Matchesh BIOSTEMI Estanded Saravid (BIOSTEMI ES) was an investigator-indicated, follow up extension rules of the "sequence size of the BOSTEMI response in the sequence size of the BOSTEMI response in the sequence size of the BOSTEMI response in the BOSTEMI response in

Fieldings Determents April 26, 2016, and March 5 (2018, 1000 parsients with STEM (1022 beinning view randoming allocated in a 11 maio to transment with holographic phopmer atoliumme ending status (447 parsies). Si le sisting) and cardinal polymor eventlimus-thering status (631 paristens, 806 beinos), ak 5 yanes, the prinary composite anglymoir di Fargar Sinoin future occurrent into (906) galaxiest transet with solid sequences and in 27 (1154) patients transed with discussing patients (statistication (94 - 950, 850 status), and and and an and an and an anglymory and and an anglymory and and and and anglement and an anglymory and anglymory and anglymory and anglymory and anglymory and anglement and a status and anglymory and anglymory anglymory anglymory anglymory anglymory anglement and anglymory anglym

Interpretation In patients underpsing primary percunanceus consury intervention for STEML biologradable popuree faiture avoid and the sense superior to durable polymere eventionus-chingi gents with respect to target lesion failure at 5 years of follow-up. The difference was driven by a numerically lower risk for ischaemia-driven target lesion measurabriation.

Funding Biotronik.

Copyright © 2023 Elsevier Ltd. All rights reserved.

Introduction the profession of the profession of

www.thelancet.com Published online October 25, 2023 https://doi.org/10.1016/50140-6736(23)02197-9

Conclusion

2

At 60 months, Orsiro remains superior to Xience in STEMI patients with respect to the primary endpoint of Target Lesion Failure (TLF) (7.7% vs. 11.1%, RR, 0.68;95% BCI, 0.47-0.98, Bayesian Posterior Probability, 0.981, **Posterior Probability of Superiority: 99.8%**)

In BIOSTEMI ES, Orsiro showed significantly lower:

- Target Lesion Failure: -31%
- Clinically-Indicated Target Lesion Revascularization: -43%
- Target Vessel Failure: -28%
- Clinically-Indicated Target Vessel Revascularization: -43%

In patients with STEMI undergoing primary PCI, Orsiro DES is superior to Xience DES with respect to the rates of TLF at 5 years of follow-up, a **difference driven by a numerically lower risk for clinically-driven TLR.**

4

The significant difference at 60-m favoring the Orsiro vs. Xience DES might have clinically relevant implications for routine clinical practice.

Iglesias, JF. et al. Long-term outcomes with biodegradable polymer sirolimus-eluting stents versus durable polymer everolimus-eluting stents in ST-segment elevation myocardial infarction: 5-year follow-up of the BIOSTEMI randomised superiority trial.

